
C Elements of Style Draft Version 0.8 by Steve Oualline

puter
to both
com-
igned,

con-
dable,

ly well

iscov-
d. For
hat's

e com-

n the
his-
Chapter 1: Style and Program Organization
A program is a detailed set of instructions read by both a human and a machine. The com

reads only the code, while the human concentrates on the comments. Good style pertains
parts of a program. Well-designed, well-written code not only makes effective use of the
puter, it also contains careful constructed comments to help humans understand it. Well-des
well-written code is a joy to debug, maintain, and enhance.

Good programming style begins with the effective organization of code. using a clear and
sistent organization of the components of your program you make them more efficient, rea
and maintainable.

Program Organization
Good computer programs are organized much like good books. This can seen especial

with technical books, in which the structure is very clear.

People have been writing books for hundreds of years, and during that time they have d
ered how to organize the material to efficiently present their ideas. Standards have emerge
example, if I asked you when this book was copyrighted, you would turn to the title page. T
where the copyright notice is always located.

The same goes for code. In fact, we can make the parallels quite explicit.

Any technical book can be analyzed into standard components. So can program. Thes
ponents correspond quite closely as the following table shows.

These components really do serve the same purposes.

• Title Page

A book's title page contains the name of the book, the author, and the publisher. O
reverse of the title page is the copyright page, where you find things like the printing
tory and Library of Congress information.

Book Program

Title Page Heading

Table of Contents Table of Contents

Chapter Module

Section Function

Paragraph Conceptual Block

Sentence Statement

Word Variable

Index Cross Reference

Glossary Variable Declaration Comments
c01.doc - 1 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ng. It
com-
mpor-

and

tion.
asily

erally,
ead in

nc-
dule,
ssed

cov-
d by
ticular

several
k. A
func-

rd in
t in a

ables
serves
ining
cross

s its
1 to
ean-
At the beginning of every well-documented program is a section known as the headi
is, in effect, the title page of the program. The heading consists of a set of boxed
ments that include the name of the program, the author, copyright, usage, and other i
tant information. The heading comments are fully discussed in Chapter 2.

• Table of Contents

Every technical book has a table of contents. It lists the location of all the chapters
major headings, and serves as a road map to the rest of the book.

A program should have a table of contents as well, listing the location of each func
This is difficult and tedious to produce by hand, however it can be produced quite e
by a number of readily available tools, as discussed later in this chapter.

• Chapters

Technical books are divided into chapters, each one covering a single subject. Gen
each chapter in a technical book consists of a chunk of material that a reader can r
one sitting, although this is not a rule: Donald Knuth's highly regarded 624-pageFunda-
mental Algorithms(Addison-Wesley, Reading, MA, 1968) contains only two chapters.

Similarly, a program is divided into modules, each a single file containing a set of fu
tions designed to do some specific job. A short program may consist of just one mo
while larger programs can contain 10, 20, or more. Module design is further discu
later in this chapter.

• Sections

Each chapter in a technical book is typically divided into several sections. A section
ers a smaller body of information than a chapter. Sections in this book are identifie
section heads in bold letters, making it easy for a reader to scan a chapter for a par
subject.

Just as a book chapter can contain several sections, a program module may contain
functions. A function is a set of instructions designed to perform a single focused tas
function should be short enough that a programer can easily understand the entire
tion.

• Index

A technical book should have a good index that lists every important subject or keywo
the book and the pages on which it can be found. The index is extremely importan
technical book because it provides quick access to specific information.

A program of any length should have a cross reference, which lists the program vari
and constants, along with the line numbers where they are used. A cross reference
as an index for the program, aiding the programmer in finding variables and determ
what they do. A cross reference can be generated automatically by one of the many
reference tools, such asxref, cref, etc.

• Glossary

A glossary is particularly important in a technical book. Each technical profession ha
own language, and this is especially true in computer programming (e.g., set COM
1200,8,N, I to avoid PE and FE errors). A reader can turn to the glossary to find the m
c01.doc - 2 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

s, and
l. Pro-

help
omati-

ook.

onsider
.

erence
l at a
es files

d

enu,
s in

yed in
com-

ming
iable
ing of these special words. Every C program uses its own set of variables, constant
functions. These names change from program to program, so a glossary is essentia
ducing one by hand is impractical, but as you'll see later in this chapter, with a little
from some strategically placed comments, you can easily generate a glossary aut
cally.

Rule 1-1:

Organize programs for readability, just as you would expect an author to organize a b

Automatic Generation of Program Documentation
Some of the program components described above can be generated automatically. C

the table of contents, for example. On UNIX systems, thectagsprogram will create such a table
Also, there is a public domain program, calledcpr, that does the job for both DOS and UNIX.

A cross reference can also be generated automatically by one of the many cross ref
tools, such asxref, cref, etc. However, you can also generate a cross reference one symbo
time. Suppose you want to find out where total-count is located. The command grep search
for a string, so typing:

grep -n total_count *.c

produces a list of every use oftotal_countin all the C files. (The-n tells grep to print line
numbers.)

The commandgrep is available both on UNIX systems and in MS-Windows with Borlan
C++ and Borland’s Turbo-C.

Also in UNIX, the command:

vi ‘grep -l total_count *.c‘

invokes thevi editor to list the files that contain the wordtotal_count . Then you can use
thevi search command to locatetotal_countwithin a file. The commands next (:next) and rewind
(:rew) will flip through the files. See yourvi and UNIX manuals for more details.

Borland C++ and Borland’s Turbo-C++ have a version ofgrep built in to the Integrated
Develop Environment (IDE). By using the command Alt-Space you can bring up the tools m
then selectgrepand give it a command line, and the program will generate a list of reference
the message window. The file corresponding to the current message window line is displa
the edit window. Going up or down in the message changes the edit window. With these
mands, you can quickly locate every place a variable is used.

You can also partially automate the process of building a glossary, which is a time-consu
task if performed entirely by hand. The trick is to put a descriptive comment after each var
declaration. That way, when the maintenance programmer wants to know whattotal_count
means, all he or she has to do is look up the first timetotal_count in mentioned in the cross
reference, locate that line in the program, and read:
c01.doc - 3 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

l

ts of

ssary

quip-
d the

what
cover

oes its
chni-
anual
n parts.

d the
le.” It
ne
how to

e their

ivate
 pri-

ary?
other
int total_count; /* total number of items in all classes */

So we have a variable (total_count) and its definition: “Total number of items in al
classes” — in other words, a glossary entry.

Module Design
A module is a set of functions that perform related operations. A simple program consis

one file; i.e., one module. More complex programs are built of several modules.

Modules have two parts: the public interface, which gives a user all the information nece
to use the module; and the private section, which actually does the work.

Another analogy to books is helpful here. Consider the documentation for a piece of e
ment like a laser printer. This typically consists of two manuals: the Operator's Guide an
Technical Reference Manual.

The Operator's Guide describes how to use the laser printer. It includes information like
the control panel looks like, how to put in paper, and how to change the toner. It does not
howthe printer works.

A user does not need to know what goes on under the covers. As long as the printer d
job, it doesn't matter how it does it. When the printer stops working, the operator calls in a te
cian, who uses the information in the Technical Reference Manual to make repairs. This m
describes how to disassemble the machine, test the internal components, and replace broke

The public interface of a module is like an Operator's Guide. It tells the programmer an
computer how to use the module. The public interface of a module is called the “header fi
contains data structures, function definitions, and#defineconstants, which are needed by anyo
using the module. The header file also contains a set of comments that tells a programmer
use the module.

The private section, the actual code for the module, resides in thec file. A programmer who
uses the module never needs to look into this file. Some commercial products even distribut
modules in object form only, sonobodycan look in the private section.

Rule 1-2:

Divide each module up into a public part (what's needed to use the module) and a pr
part (what's needed to get the job done). The public part goes into a .h file while the
vate part goes into a .c file.

Libraries and Other Module Groupings
A library is a collection of generally useful modules combined into a special object file.

Libraries present a special problem: How do you present the public information for a libr
Do you use a single header file, multiple header files for the individual modules, or some
method?

There is no one answer. Each method has its advantages and disadvantages.
c01.doc - 4 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

inter-
ction

a tool

s
nt

is

often
, and

ages of

gle,
s the

tem.
only

,500
get
in-
Multiple header files
Because a library is a collection of modules, you could use a collection of header files to

face with the outside world. The advantage to this is that a program brings in only the fun
and data definitions it needs, and leaves out what it doesn't use.

The X Windows system, for example, has a different header file for each module (called
kit in X-language).

A typical X Windows program contains code that looks like this:

#include <Xll/Intrinsic.h>
#include <Xll/Shell.h>
#include <Xm/Xm.h>
#include <Xm/Label.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>
#include <Xm/Separator.h>
#include <Xm/BulletinB.h>
#include <Xm/CascadeB.h>

As you can see, this can result in a lot of#includes. One of the problems with this system i
that it is very easy to forget one of the#include statements. Also, it is possible to have redunda
#includes. For example, suppose the header fileXmILabel.hrequiresXmISeparator.hand con-
tains an internal#include for it, but the program itself also includes it. In this case, the file
included twice, which makes extra, unnecessary work for the compiler.

Also, it is very easy to forget which include files are needed and which to leave out. I've
had to go through a cycle of compile and get errors, figure out which include file is missing
compile again.

Therefore, the advantages of being compact must be balanced against the disadvant
being complex and difficult to use.

One header does all
One way of avoiding the problems of multiple header files is to throw everything into a sin

big header file. Microsoft Windows uses this approach. A typical Windows program contain
line:

#include <windows.h>

This is much simpler than the multiple include file approach taken by X Windows Sys
Also, there is no problem with loading a header file twice because there is only one file and
one#includestatement.

The problem is that this file is 3,500 lines long, so even short 10-line modules bring in 3
lines of include file. This make compilation slower. Borland and Microsoft have tried to
around this problem by introducing “precompiled” headers, but it still takes time to compile W
dows programs.
c01.doc - 5 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

one

roper

compi-

more

para-
a single

ubject
may

er by a

ading
ming
Mixed approach
Borland's Turbo Vision library (TV) uses a different method. The programmer puts#define

statements in the code to tell the TV header which functions will be used. This is followed by
#includedirective.

#define Uses_TRect
#define Uses_TStatusLine
#define Uses_TStatusDef
#define Uses_TStatusItem
#include <tv.h>

The file tv.h brings in additional include files as needed. (The#defines determine what is
needed.) One advantage over multiple include files is that the files are included in the p
order, which eliminates redundant includes.

This system has another advantage in that only the data that's needed is brought in, so
lation is faster. The disadvantage is that if you forget to put in the correct#definestatements, your
program won't compile. So while being faster than the all-in-one strategy, it is somewhat
complex.

Program Aesthetics
A properly designed program is easy to read and understand.

Part of what makes books readable is good paragraphing. Books are broken up into
graphs and sentences. A sentence forms one complete thought, and multiple sentences on
subject form a paragraph.

Code paragraphs
Similarly, a C program consists of statements, and multiple statements on the same s

form a conceptual block. Since “conceptual block” is not a recognized technical term, you
just as well call them paragraphs. In this book, paragraphs are separated from each oth
blank line. You can separate paragraphs in C in the same way.

Omitting paragraphs in code creates ugly, hard-to-read programs. If you’ve ever tried re
a paper without paragraphing, you realize how easy it is to get lost. Paragraph-less program
tends to cause the program to get lost:
c01.doc - 6 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

rate the
/* Poor programming style */
void display(void)
{

int start, finish; /* Start, End of display range */
char line[80]: /* Input line for events */
printf("Event numbers? ");
start = -1;
finish = -1;
fgets(line, sizeof(line), stdin);
sscanf(line,"%d %d", &start, &finish);
if (start == -1)

return;
if (!valid(finish))

finish = start;
if (valid(start))

display2(start, finish);
}

Now, see how much better the same code looks after adding some whitespace to sepa
function into areas:
c01.doc - 7 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

seman-
udge-

re are
resses a
tement
/* good programming style
void display(void)
{

int start, finish; /* Start, End of display range */
char line[80]: /* Input line for events */

printf("Event numbers ? ");
start = -1;
finish = -1;

fgets(line, sizeof(line), stdin);
sscanf(line,"%d %d", &start, &finish);

if (start == -1)
return;

if (!valid(finish))
finish = start;

if (valid(start))
display2(start, finish);

}

Note that the paragraphs here are not defined by the syntax of the language, but by the
tics of the program. Statements are grouped together if they belong together logically. That j
ment is made by the programmer.

Rule 1-3:

Use white space to break a function into paragraphs.

Statements
Good paragraphing improves the aesthetics, hence the readability, of a program. But the

also aesthetic issues at the level of the sentence; or in C, the statement. A statement exp
single thought, idea, or operation. Putting each statement on a line by itself makes the sta
stand out and reserves the use of indentations for showing program structure.
c01.doc - 8 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

our
gram-
s and
/* Avoid this style of programming */
void dump_regs()
{

{int d_reg_index;for(d_reg_index=0;d_reg_index<7
d_reg_index++)printf("d%d 0x%x\n",
d_reg_index, d_reg[d_reg_indexl););

{int a_reg_index;for(a_reg_index=0;a_reg_index<7
a_reg_index++)printf("a%d 0x%x\n",
a_reg_index, a_reg[a_reg_indexl););

}

Figuring out this code is like extracting a fossil from a rock formation. You must take out y
hammer and chip at it again and again until something coherent emerges. This kind of pro
ming obscures the control flow of the program. It hides statement beginnings and ending
provides no paragraph separations.

Simply reformatting this code gives us a clearer understanding of what it does.

/* Better style */
void dump_regs()
{

{
int d_reg_index = 0; /* Data register index */

for (d_reg_index = 0;
d_reg_index < 7;
++d_reg_index)

printf("d%d Ox%x\n",
d_reg_index, d_reg[d_reg_indexl);

}
}
{

int a_reg_index; /* Index of the address reg */

for (a_reg_index = 0;
a_reg_index < 7;
++a_reg_index)

printf("a%d Ox%x\n",
a_reg_index, a_reg[a_reg_indexl);

}
}

}

(Better yet, add comments after thed_reg_index and a_reg_index declarations to
explain the variables.)
c01.doc - 9 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

suf-
struc-

author
can be

n eas-
Rule 1-4:

Put each statement on a line by itself

In clearly written English there are limits on the optimum length of a sentence. We've all
fered through the sentence that runs on and on, repeating itself over and over; or, through a
ture whose complexity demonstrates more the confusion than the cleverness of the
(although it should be noted that, as in the present example, a demonstration of confusion
the whole point), just get all bollixed up.

Likewise, a clearly written C statement should not go on forever. Complex statements ca
ily be divided into smaller, more concise statements. For example:

/* Poor practice */
ratio = (load * stress - safety_margin -

fudge_factor) / (length * width * depth -
shrinkage);

/* Better */
top = (load * stress - safety_margin - fudge_factor);
bottom = (length * width * depth - shrinkage);

ratio = top / bottom;

Rule 1-5:

Avoid very long statements. Use multiple shorter statements instead.
c01.doc - 10 - Modified: January 9, 1999 12:16 am

	Chapter 1: Style and Program Organization
	Program Organization

	• Title Page
	• Table of Contents
	• Chapters
	• Sections
	• Index
	• Glossary
	Automatic Generation of Program Documentation
	Module Design
	Libraries and Other Module Groupings
	Multiple header files
	One header does all
	Mixed approach

	Program Aesthetics
	Code paragraphs
	Statements

