
C Elements of Style Draft Version 0.8 by Steve Oualline

envi-

one
s. Do

hich
age-

age a
nerate
ch of
need

tory

nes.

s. You

igure
put
tays
Chapter 7: Directory Organization and
Makefile Style

So far we've only discussed the C program itself. This chapter explores the programming
ronment, which includes organizing your program files, and themakeutility, which turns source
programs into a finished work.

Organizing Your Directories
Small programs consisting of only a few files are easy to organize: just stick everything in

directory. But suppose you're an adventurous programmer and decide to write two program
you stick them both in the same directory? No.

Put each program's files in a separate directory. That way you won't have to figure out w
file goes with which program. It also keeps the number of files per directory down to a man
able level

Rule 7-1:

Whenever possible, put all the files for one program or library in one directory.

Someday you will probably work on a series of programs, like a set of programs to man
mailing list. There are programs to enter data, check for duplicates, print labels, and ge
reports. All of these programs use a common set of low level list functions. You can't put ea
these functions in each program directory. Duplicate files are very difficult to maintain. You
some way to share files.

The solution is to turn the list functions into a library. The library goes in one subdirec
while other subdirectories hold the various programs.

Suppose you have all four programs all going to the Library directory for their subrouti
But the Library directory contains both the source and the library file (MAIL.LIB) and headers
(MAIL.H) used by these programs. Having access to all that data can easily confuse thing
need to limit what they can see.

The solution is to have a special directory for libraries and header files as illustrated by F
4-2. When a library is built it is “released” by placing it in this directory. The header files are
here as well. This directory contains the public part of the library, while the private part s
behind in the source directory.
c07.doc - 102 - Modified: January 9, 1999 12:17 am

C Elements of Style Draft Version 0.8 by Steve Oualline

s to

.

:

The top level directory (Mailing List) should be kept free of sources, except for aMakefile,
READ.ME,or other compilation. This makes the files in the top level simple. Adding program
this level adds unneeded complexity.

Figure 4-2: Mailing list directory tree

The make Program
Almost all C compilers come with a program building utility calledmake.It is designed to

perform the compilation and other commands necessary to turn source files into a program

To usemake,you provide it with a description of your program in a file namedMakefile.This
file also contains the transformation rules that tell it how to turn source into objects.

TheMakefile isdivided into six major sections:

1. Heading comments

2. Macro definitions

3. Major targets

4. Other targets

5. Special compilation rules

6. Dependencies

Heading Comments
The first things a programmer needs to know when confronting a strangeMakefileare “What

does it do?” and “How do I use it?” The heading comments of yourMakefileshould answer those
questions.

The first paragraph of the heading comments explains what theMakefilecreates. For example

Enter
Check
dup. Label Report

LIB
(binaries)

Library
(source)

Mailing
List

Exports MAIL.LIB
and header files.
c07.doc - 103 - Modified: January 9, 1999 12:17 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ght be
ned to

n

pro-

g a list
###
Makefile for crating the program "hello"
###

###
This Makefile creates the math libraries:
fft.a, curve.a and graph.a
###

Customization Information
Programmers use the preprocessor#ifdef to allow for compile time configuration of their pro-

gram. For example, there might be a debug version and a production version. Or there mi
several different flavors, one for each of the various operating systems the program is desig
run on.

The effect of these conditional compilation directives filter up to theMakefile. For example,
defining the macroCFLAGSas -DDEBUGmay produce a test program, while the definitio
-DPRODUCTION may produce the production version.

Any configuration information should be listed in the heading comments. This way a
grammer can immediately see what customization must be performed on theMakefilebefore he
starts to build the program.

For example:

#
Set the variable SYSTEM to the appropriate value for your
operating system.
#

SYSTEM=-DBSD4_3 For Berkeley UNIX Ver. 4.3
SYSTEM=-DSYSV For AT&T System V UNIX
SYSTEM=-DSCO For SCO UNIX
SYSTEM=-DDOS For DOS (Borland Turbo C)
#

Standard targets
The standard form of themakecommand is:

make target

Here,target selects what you want to make. (Microsoft'smake isa notable exception to this
standard.) The programmer needs to know which targets are valid and what they do. Puttin
of targets in the heading provides this information.

For example:
c07.doc - 104 - Modified: January 9, 1999 12:17 am

C Elements of Style Draft Version 0.8 by Steve Oualline

tory.

s up

pro-

ys-

have

lled

over

ed, the
###
Target are:
all - create the program "hello"
clean - remove all object files
clobber - same as clean
install - put the program in $(DESTDIR)
###

Over the years a standard set of four targets have developed:

all This target compiles all the programs. This is the standard default target.

install This target copies the program and associated files into the installation direc
For local commands this can be/usr/local/bin.For production software, this will
be the official release directory.

clean This target removes all program binaries and object files and generally clean
the directory.

clobber Like clean, this target removes all derived files—that is, all files that can be
duced from another source. In cases where a software control system such asSCCS
or RCSis used, it means removing all source files from the software control s
tem.

lint (UNIX systems)

This target runs the source files through the program checker

This list represents the minimum “standard” set of targets. Other optional target names
also come into use over the years.

depend or maketd

Creates a list of dependencies automatically and edits them into theMakefile.
There are several utilities to do this, including a public domain program ca
maketd.

srcs Checks out the sources from a software control system such asSCCSor RCS.

print Prints the sources on the line printer.

xrf Creates a cross reference printout.

debug Compiles the program with the debug flag enabled.

shar Makes a char format archive. This format is widely used to distribute sources
the Internet and USENET.

Macro Definitions
Themakeutility allows the user to define simple text macros, such as:

SAMPLE=sample.c

The macros are used to define a variety of items, such as the source files to be compil
compiler name, compilation flags, and other items.
c07.doc - 105 - Modified: January 9, 1999 12:17 am

C Elements of Style Draft Version 0.8 by Steve Oualline

var-

s the

mon:

am.

t

n it
nt all
Themakeprogram predefines a number of macros. (The actual list of Redefined macros
ies, so check your manual to see which macros are defined for your version ofmake.)

Each macro definition should be preceded by a short, one-line comment that explain
macro. Also use white space to separate each comment/macro combination.

For example:

The standard C compiler
CC = cc

Compile with debug enabled
CFLAGS = -g

The source to our program
SOURCE = hello.c

The object file
OBJECT = hello.o

Common macro definitions
There are no standard macro definitions; however, the following is a list of the most com

CC The C compiler

CFLAGS Flags supplied to the C compiler for compiling a single module.

LDFLAGS Flags supplied to the C compiler for loading all the objects into a single progr

SRCSor SOURCES

The list of source files.

OBJSor OBJECTS

The list of object files. Some of the newer versions ofmakehave an extension tha
allows you to automatically generate this macro from theSRCSmacro. For exam-
ple, the following line tells Sun'smakethat OBJSis the same asSRCS,except
change all the.c extensions to .o.

0BJS = $(SRCS:.c=.o)
HDRSor HEADER

The list of header files.

DESTDIR The destination directory, where theinstall target puts the files.

Configurable variables
As mentioned earlier, macros are frequently used for configuration information. Whe

comes to actually defining the variable, it is useful to list all the definitions and then comme
but the selected one. For example:
c07.doc - 106 - Modified: January 9, 1999 12:17 am

C Elements of Style Draft Version 0.8 by Steve Oualline

These

ings

piler.
Define one of the following for your system
SYSTEM=-DBSD4 3 # For Berkeley UNIX Version 4.3
#SYSTEM=-DSYSV # For AT&T System V UNIX
#SYSTEM=-DSCO # For SCO UNIX
#SYSTEM=-DDOS # For DOS (Borland Turbo C)

Major Targets
So far, we've just been defining things. At this point it's time to tellmaketo actually do some-

thing. This section contains the rules for all the major targets listed in the comment header.
targets are grouped just after the macros so they can be easily located.

For example:

all: hello

install: hello
install -c hello /usr/local/bin

clean:
rm -f hello.o

clobber: clean

Other Targets
Often aMakefilecontains several intermediate or minor targets. These are to help build th

for the major targets. For example, the major targetall calls upon the minor targethello.

Minor targets follow the major ones.

Example:

hello: $(OBJECTS)
$(CC) $(CFLAGS) -o hello $(OBJECTS)

Special Rules
The makeprogram knows about all or most standard compilers, such as the C com

Sometimes you need to define a rule for a special compiler, such as the parser generatoryacc. This
program takes grammars (y files) and turns them to C code

TheMakefilerule for this program is:
c07.doc - 107 - Modified: January 9, 1999 12:17 am

C Elements of Style Draft Version 0.8 by Steve Oualline

our C
lation:

-

d their

s
ck-

end of
#
Use yacc to turn xxx.y into xxx.c
#
.y.c:

yacc $*.y
mv yacc.xx.cc $*.c

Notice that every special rule has a comment explaining what it does.

This target section can also be used to override the default rules. For example, if all y
files need to run through a special pre-processor, you can install your own rule for C compi

#
Run the files through "fixup" before compiling them
#
.c.o:

fixup $*.c
$(CC) $(CFLAGS) -c $*.c

Somemakeprograms provide you with a default rule file.Under no circumstances should
you change this file.Doing so changes causesmaketo behave in a nonstandard way. Also, pro
grammers expect the complete compilation instructions to be kept in the program'sMakefile,not
hidden in some system file.

Dependencies
The dependencies section shows the relationship between each of the binary files an

source. For example:

hello.o: hello.c banner.h
tellsmakethat hello.o is created fromhello.candbanner.h.

Dependency checking is the weakest point in themakecommand. Frequently this section i
out of date or missing entirely. Advancedmakeprograms have an automatic dependency che
ing, thus eliminating the need for this section.

Other solutions have also sprung up. The public domain utilitymaketdand other similar pro-
grams automatically generate dependency lists. They all depend on this section being at the
theMakefile.

Example
The full Makefilefor thehelloprogram is:
c07.doc - 108 - Modified: January 9, 1999 12:17 am

C Elements of Style Draft Version 0.8 by Steve Oualline
###
Makefile for creating the program "hello"
Set the variable SYSTEM to the appropriate
value for your operating system.
#
SYSTEM=-DBSD4_3 For Berkeley UNIX Version 4.3
SYSTEM=-DSYSV For AT&T System V UNIX
SYSTEM--DSCO For SCO UNIX
SYSTEM=-DDOS For DOS (Borland Turbo C)
#
Targets are:
all - create the program Hello
clean - remove all object files
clobber - same as clean
install - put the program in
/usr/local/bin
###

#
Macro definitions
#

The standard C compiler
CC = cc

Compile with debug enabled
CFLAGS = -g

The source to our program
SOURCE = hello.c

The object file
OBJECT = hello.o

Define one of the following for your system

SYSTEM=-DBSD4_3 # For Berkeley UNIX Version 4.3
#SYSTEM=-DSYSV # For AT&T System V UNIX
#SYSTEM=-DSCO # For SCO UNIX
#SYSTEM=-DDOS # For DOS (Borland Turbo C)
c07.doc - 109 - Modified: January 9, 1999 12:17 am

C Elements of Style Draft Version 0.8 by Steve Oualline
Compile with debug enabled
CFLAGS = -g $(SYSTEM)

#
Major targets
#

all: hello

install: hello
install -c hello /usr/local/bin

clean:
rm -f hello.o

clobber: clean

#
Minor targets
#
hello: $(OBJECTS)

$(CC) $(CFLAGS) -o hello $(OBJECTS)
#
No special rules
#

#
Dependencies
#
hello.o: hello.c banner.h

Common Expressions
Whenever possible, use macros for common directories or other text. For example:
c07.doc - 110 - Modified: January 9, 1999 12:17 am

C Elements of Style Draft Version 0.8 by Steve Oualline

d just
o the
#
Poor practice
#
INSTALL_BIN = /usr/local/bin # Place to put the binaries
INSTALL_MAN = /usr/local/man # Place to put the man pages
INSTALL_HELP = /usr/local/lib # Place to put help info.
#
Better practice
#
DESTDIR=/usr/local
INSTALL_BIN = $(DESTDIR)/bin # Place to put the binaries
INSTALL_MAN = $(DESTDIR)/man # Place to put the man pages
INSTALL_HELP = $(DESTDIR)/lib # Place to put help info.

and

#
Poor practice
#

Yacc switches
YACC_FLAGS = -c -t -I/project/include -I/general/include
C switches
CFLAGS = -c -g -I/project/include -I/general/include

#
Good practice
#
INCLUDES=-I/project/include -I/general/include

Yacc switches
YACC_FLAGS = -c -t $(INCLUDES)

C switches
CFLAGS = -c -g $(INCLUDES)

Complexity
Installing a program can be tricky. I've seen a shell script with more than 100 lines create

to install a single program. There is a temptation to put long, complex command sets int
Makefile.Because of the difficulties of both shell program andMakefileformat, this results in a
large, complex, and impossible to maintain piece of code.
c07.doc - 111 - Modified: January 9, 1999 12:17 am

C Elements of Style Draft Version 0.8 by Steve Oualline

test,

e time
and
pila-
epa-

on

l

nd far

m
very
In general, it is best to put large command scripts in a batch file. This makes it easier to
debug, and comment them.

Portability Considerations
Makefiles have a standard format that is portable across most systems. However, compil

options differ from system to system. For example, a program written to work on both UNIX
DOS will require two entirely different commands sets to create it. Stuffing two sets of com
tion instructions in a singleMakefilecan get messy. When this happens, it is best to create a s
rate Makefile for each system. The standard method for naming these variousMakefiles is
<system>.mak.Some standard names are:

bsd.mak BSD4.3 UNIX Makefile

att.mak AT&T System V

sun.mak SUNOS UNIX system

turboc.mak DOS using Borland's Turbo C

msc.mak DOS using Microsoft's C compiler

sco.mak SCO UNIX

This list can grow quite long as programs are ported to more and more systems. Aread.mefile
must be distributed with the software to describe how to select the properMakefile.

Generic Makefiles
Some of the more advancedmakecommands have an include facility that allows the inclusi

of other files in theMakefile.Some programmers have tried to create genericMakefiles, to be used
like this:

#
Define some macro names to be
used by the generic Makefile
#
SRCS=hello.c
OBJS=hello.o
PROGRAM=hello

include(Makefile.generic)

In theory, this should work nicely. There is one genericMakefilethat does everything, then al
you have to do is set things up properly.

In practice, though, it's not so simple. Creating a program is never a standard process a
too many have their little peculiarities. Trying to program around them in a genericMakefileis
extremely tricky.

One approach is to create a genericMakefile to be used as a template for making custo
MakefilesThe problem with this approach is that when you want to add a new target to e
c07.doc - 112 - Modified: January 9, 1999 12:17 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ility.
-

igned
e vital
Makefile. youmust edit each one.

The solution? There isn't one. This is a classic trade-off of standardization vs. flexib
GenericMakefiles are standard but inflexible. IndividualMakefiles are flexible but hard to stan
dardize.

Conclusion
Makefiles are as important to the programming process as the program itself. A well des

Makefilemakes it easy to create a program. Comments are necessary to tell programmers th
information that lets them create future versions of your program.
c07.doc - 113 - Modified: January 9, 1999 12:17 am

	Chapter 7: Directory Organization and Makefile Style
	Organizing Your Directories
	The make Program
	Heading Comments
	Customization Information
	Standard targets
	Macro Definitions
	Common macro definitions

	Configurable variables
	Major Targets
	Other Targets
	Special Rules
	Dependencies
	Example
	Common Expressions

	Complexity
	Portability Considerations
	Generic Makefiles
	Conclusion

