Chapter - 9
Variable Scope
and Functions

Variable Scope and Class

Variables are defined by two attributes:

Scope Theareawhere avariableisvalid:
Local or Global

Storage Class

Describes the storage allocation of the variable:
Permanent or Temporary

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 2

Variable Scope

Global variables are valid everywhere.
Local variables are only valid inside the {} where

they are defined.

SCOpq&fa%}S%]?aﬂf a global variable

Int maln() {
t loc ﬁ // a local variable
Scope of Tocal
global = 1; // global can be used here
local = 2' // so can local
egiphning a new block
Ekxmaeﬂa y_l{bcal; // this is local to the block

VeY.ilryldé)ﬂal = global + local;

// Block closefl
// very_local fan not be used

return (0);

J

Practical C++ Programming Copyright 2003 O'Rellly and Associates Page 3

Hidden Variables

scope of

int total: // Total nunber of entries global count
Int count; // Count of total entries
Int main() {
t ot al
count

{

O;
O;

scope of local count

\ } global count is hidden

++count ;
return (0);

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 4

Storage Class

A variable is either permanent or temporary

Permanent Variables

Declared either as global variables or with the keyword static.

Initialized only once (when the program begins).

Destroyed only once (when the program ends).

Temporary Variables

Must be local variables

Initialized each time they come into scope

Destroyed when they go out of scope

Temporary variables are allocated from a memory space called the “stack”.
On PC class machines this is very limited (64K max, sometimes only 4K).
“Stack Overflow” errors are the result of allocating too many temporary
variables.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 5

Per manent vs.
Temporary

#1 ncl ude <i ostreane

Int main() {
I Nt counter; [/ |1 oop counter

for (counter = 0; counter < 3; ++counter) {
I nt tenporary = 1;
static int permanent = 1;

std::cout << "Tenporary << tenporary <<

" Permanent " << permanent << '\n';
++t enpor ary;
++per manent ; Temporary 1 Permanent 1
} Temporary 1 Permanent 2

return (0); Temporary 1 Permanent 3

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 6

Types of Declarations

Declared Scope Storage Initialized
Class

Outside all blocks Global Permanent Once

static outside all Global Permanent Once

blocks

Inside a block Local Temporar Eachtimeblock is
y entered

staticinsideablock Loca Permanent Once

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 7

Namespaces

namespace 10_stuff {
int output_count; // # chars sent
int input_count; // # chars in

I
int main ()

{

++10_stuff::output_count;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 8

Special namespaces

std Used for system variables and classes (std: :
cout)

-- Global namespace. (Usage: : :global)

<blank>File specific namespace (for variables not
used outside the file.)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 9

using Statement

using — don't use

Imports variables from other namespaces into the
current code:

namespace foo {
int fool; // Something
int foo2;// Something else
I
using foo::fool;
fool = 2;

using namespace foo; // Imports all
fool = foo2 = 3;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 10

Functions

Comments at the beginning of afunction:

* Name -- Name of the function

* Description -- What the function does

* Parameters -- Define each of the parameters to the function
* Return value -- Describe what the function returns

/***

* triangle -- conmpute area of a triangle *
* *
* Paraneters *
* wdth -- wdth of the triangle *
* height -- height of the triangle *
* *
* Returns *
* area of the triangle *
Pl i b i ol b S i S S b i S S i i i e S i i i i i i b ol i S o i b i i b S i i S

/

The function itself begins with:
float triangle(float wdth, float height)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 11

Triangle Function

It's use:

#include <iostream>
int main () {

size = triangle(l1.3, 3.3);

std::cout << "Area: " << size << "\n";
return (0);

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 12

Parameter Passing and Return

size = triangle(l1l.3, 8.3)
Turnsinto

Triangle's variable wwdth = 1.3

Triangle's height = 8.3

Begin execution of the first line of the function
triangle.

The return statement:
return (area);

[l
size = triangle(l1l.3, 8.3)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 13

Function Prototypes
(declar ation)

Just like variables functions must be declared before they can be used.

Typical prototype (declaration)

float triangle(float wdth, float height);
This function returns a floating point number (the first float) and takes two
floating point parameters.

This can also be written as:

float triangle(float, float);
This version is frowned upon because it doesn't tell the reader what the two
parameters are. Also it's easier to make the first form by cutting out the first
line of the function and pasting it where you need the prototype using your
editor. Don't forget to add the semicolon at the end.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 14

Functionswith no
~ parameter

int get_value();
or
int get_value (void);

The second form is a holdover from C which uses (void) toindicate a
function with no parametersand () to indicate afunction with no parameter
checking (i.e. any number of parameters of any type.)

Usage:
val ue = get val ue;
Functions that return nothing (subroutines)
void print_answer(int answer);

Usage:
print_answer (45);

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 15

Practical C++ Programming

. A S -

const Parameters and
ReturnsValues

Constant parameters can not be changed.

}
It'sillegal to change the value of a constant parameter:

w dth = 0.5; [/ 11l egal
Constant return values can not be changed. They can be assigned to another

variable and changed. As it stands now, constant return values are not
useful. A little later we'll see where const makes a difference.

Copyright 2003 O'Reilly and Associates Page 16

e e

Call by value

Ordinary parameters are passed by "call by value." Values go in, but they
don't come out. In the following program we try to change the value of
countin 1 nc_count er, but it doesn't work.

{

++counter;

}

main () {

inc_counter (a_count) ;

——Prints. 0

}
Changes made to simple parameters are not passed back to the caller.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 17

Refer ences Revisited

Two things occur when we declare a reference parameter such as.

| nt si npl e; /[l A sinple variabl e
Int & ef = sinple; Il A reference paraneter

Part oneis areference declaration:

I nt & ef= sinple; Il A reference paraneter

This creates areference declaration.

The second part binds the reference to the variable (in this case smple).

Int & ef = sinple,; Il A reference paraneter

For ssimple reference declarations, declaration and binding always occur in
one statement.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 18

e e

Refer ence Parameters

{

++counter;

}

int main () {

inc_counter (a_count) ;

}

In this case the declaration and the binding occur at two different places.
Changes to count er are reflected in a_count because counter isa

reference. In other wordscount er isthesameasa_count.
Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 19

Reference Return Values

}
Usage:

int item_array([5] = {1, 2, 5000, 3, 4}; // An array

std::cout << "The biggest element 1s " <<
biggest (item_array, 5) << '\n';

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 20

Reference Return Values (cont.)

Remember areference is treated exactly the same as the real thing.
bi ggest(item array, 5)

IS the same as;

| tem array| 2]
So:

/] Zero the | argest el enment
bi ggest(itemarray, 5) = 0;

IS the same as;

/] Zero the | argest el ement
ltem array[2] = O;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 21

Constant Reference
Return Values

Legal:

I nt &biggest(int array[], int n_elenments),;
/3
biggest(itemarray, 5) = 0;// Zero the biggest elem

const return type prevents changing the returned reference.

Illegal:

const int &biggest(int array[], int n_elenents);
[.......
biggest(itemarray, 5 = 0;// Generates an error

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 22

o T . SR A T I I S A e A

Dangling References

4) Bind 11 to return (main'si)

3) bind tmpltoil,
tmp2to 12,

cal min
5) Destroy tmp1, tmp2

6) 1 is bound to tmpl, which is destroyed
Yy and ASSoClale Fa(

Practical C++ Programming Copyrignt 2003 URe SSOCI ALES e23

Array Parameters

Array parameters are automatically passed by call by address. Changes
made to an element of an array will be passed back to the caller.

int sum(int array[]);

For single dimension arrays you don't need to specify the array size. For
multi-dimensional arrays, all dimensions except the last must be specified:

int summatrix(int nmatrix1[10][10]); /1 Legal
int summatrix(int matrix1[10][]);: /1 Legal
int summatrix(int matrix1[][]): /1 111 egal

Note: Array parameters are automatically turned to pass by reference.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 24

Question: Why are All Stringsof Length O
no Matter How Long They Really Are?

/***

***/

/%
*/

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 25

Function Overloading

I nt square(int value) {
return (value * val ue);
}

fl oat square(float value) {
return (value * val ue);
}

Thisis alowed in C++. The language is smart enough to tell the difference

between the two versions. (Other languages such as FORTRAN or
PASCAL or not.)

Function must have different parameter.

| nt get _nunber (voi d);
fl oat get _nunber(void); [/ Illegal.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 26

Style and Function
Overloading

Functions that are overloaded should perform roughly the same job. For
example, all functions named square should square a number.

The following is syntactically correct, but a style disaster:

[/ Square an i nteger
I nt square(int val ue);

// Draw a square on the screen

void square(int top, int bottom
Int left, int right);

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 27

Default Parameters

voi d draw const rectangl e & ectangl e;
doubl e scale = 1.0)

Tells C++, “If scale is not specified, make it 1.0.”

The following are equivaent:

draw(big rectangle, 1.0); [/ Explicitly specify scale
draw(bi g rectangl e); /[l Let it default to 1.0

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 28

Unused Parameters

The following generates a warning: “button not used”

void exit _button(Wdget &button) {
std::cout << "Shutting down\n";
exit (0);

}

We can tell C++ that we have one parameter, a widget that we don’t use, by not
including a parameter name.

void exit _button(Wdget & {
Good style, however, dictates that we put the parameter name, even as a comment:

void exit _button(Wdget & * button */) {

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 29

Inline functions

1int square (int value) {
return (value * wvalue);

}

int main () {
/).
X = sqguare (x);

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 30

-

o+ 7 & &L 7 fi7e £ % @

Generated Code

Generates the following assembly code on a 68000 machine (paraphrased)

// The next two lines do the work

Notice that we use 8 instructions to call 2 instruction.

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page 31

v« s T I\ IJdsa ¥

Inline square
The inline keyword causes the function to be expanded inline eliminating
any calling overhead:

inline 1nt square(int value) {
return (value * value);

}

Generated code:

//

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 32

Inline notes

The keyword inline is a suggestion. If the function
can not be generated inline, then C++ will generate
an ordinary function call automatically. (At least
that's what It supposed to do. Some older compilers
have problems.)

Useinlinefor very short functions.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 33

Parameter [ype
Summary

Type Declaration

Call by value function (int wvar)
Value is passed into the function, and can be changed inside the function, but the
changes are not passed to the caller.

Congtant call by function (const int var)

value
Valueis passed into the function and cannot be changed.

Reference function (int &wvar)
Reference is passed to the function. Any changes made to the parameter are reflected in
the caller.

Constant Reference function (const int &var)

Value cannot be changed in the function. This form of a parameter is more efficient then
“constant call by value” for complex data types.
array function(int arrayl[])

Value is passed in and may be modified. C++ automatically turns arrays into reference
parameters.

Cdl by address function (int *var)
Passes a pointer to an item. Pointers will be covered later.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 34

Structured
Programming

How to write aterm paper using structured programming techniques:
e Start with an outline

* Replace each step in the outline with more detailed sentences.
* Replace each sentence with more detailed sentences.
* Repeat until you've got enough details

Structured programming techniques.

* Write a simple version of your program leaving most of the work up to
func-tions that you haven't written yet.

* Fill in some of the details by writing the functions you left out of the first
CULt.

» Keep writing functions until there are no more to write.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 35

Bottom Up Programing

 Write an overall design of your program.

e Write small functions that perform the basic
functions.

* Make surethey are debugged

e Write small functions that build on the basic
functions.

e Continue building until the program is written.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 36

Recursion

Recursion occurs when a function callsitself either directly or indirectly.
A recursive function must follow two basic rules:

1. It must have an ending point.

2. It must simplify the problem.

Factorial function:

fact(0) =1

fact(n) =n* fact(n-1)
In C++ thisis:

{

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 37

Summing an array
recursively

}
Example;

Sum(1832) =
1+Sum(832) =
8+ 3Sum(32) =
3+3Sum (2) =
2
3+2=5
8+5=13
1+13=14
Answer = 14

Practical C++ Programming

Copyright 2003 O'Reilly and Associates

Page 38

