Chapter - 19 Floating Point

Floating Point Format

 \pm Is the sign (plus or minus).

f.ff Is the 4 digit fraction.

 $\pm e$ Is the single-digit exponent.

Zero is 0.0

We represent these numbers in "E" format: $\pm f.fffE \pm e$.

Examples:

Notation	Number
+1.000E+ 0	1.0
+3.300E+ 5	330000
-8.223E-3	-0.01
+0.000E+ 0	0.0

Floating Point Add/Sub

1. Start with the numbers:

- +2.000E+0The number is 2.0+3.000E-1The number is 0.3
- 2. Add guard digits to both numbers
 - +2.0000E+0 The number is 2.0
 - +3.0000E-1 The number is 0.3
- 3. Shift the number with the smallest exponent to the right one digit and

numbers match.

+2.0000E+0The number is 2.0+0.3000E-0The number is 0.3

4. Add the two fractions. The result has the same exponent as the two numbers.

+2.0000E+0	The number is 2.0
+0.3000E-0	The number is 0.3
+2.3000E+0	Result 2.3

Floating Point Add/Sub

5. Normalize the number by shifting it left or right until there is just one non-zero digit to the left of the decimal point. Adjust the exponent accordingly. A number like +0.1234E+0 would be normalized to +1.2340E-1. Because the number +2.3000E+0 is already normalized we, do nothing.

6. Finally, if the guard digit is greater than or equal to 5, round the next digit up; otherwise truncate the number.

- +2.3000E+0 Round last digit
- +2.300E+0 Result 2.3

7. For floating-point subtraction, change the sign of the second operand and add.

Multiplication

- 1. Add the guard digit:
 - +1.2000E-1The number is 0.12+1.1000E+1The number is 11.0
- 2. Multiply the two fractions and add the exponents. (1.2 *
 - +1.2000E-1 The number is 0.12
 - +1.1000E+1 The number is 11.0
 - +1.3200E+0 The result is 1.32
- 3. Normalize the result. If the guard digit is less than or equal to
- 5, round the next digit up. Otherwise, truncate the number. 1.2200E+0 The number is 1.22

+1.3200E+0 The number is 1.32

Division

- 1. Add the guard digit:
 - +1.0000E+2The number is 100.0+3.0000E+1The number is 30.0
- 2. Divide the fractions, subtract the exponents:
 - +1.0000E+2The number is 100.0+3.0000E+1The number is 30.0+0.3333E+1The result is 3.333
- 3. Normalize the result:
 - +3.3330E+0 The result is 3.333
- 4. If the guard digit is less than or equal to 5, round the next

+3.333E+0 The result is 3.333

Overflow and Underflow

```
9.000E+9 × 9.000E+9
is:
```

 8.1×10^{19} That too big for our representation (overflow).

```
1.000E-9 \times 1.000E-9
is
1.0 \times 10^{-18}
That's to small (underflow).
```

Roundoff Error

1/3 + 1/3 != 2/3

2/3 as floating-point is 6.667E-1 1/3 as floating-point is 3.3333-1 +3.333E-1 +6.666E-1 or 0.6666 which is not: +6.667E-1

1 - 1/3 - 1/3 - 1/3

1.000E+0

- 3.333E-1
- 3.333E-1
- 3.333E-1

or:

1.000E+0

- 3.333E-1

- 3.333E-1

- 3.333E-1

0.0010E+0 or 1.000E-3

Minimizing error:

- Use double instead of float
- Other techniques are beyond the scope of this course.

Determining Accuracy

int main(){

++counter;

break;
++counter;

}

Precision and Speed

Some older compilers do everything in double.

float answer, number1, number2;

answer = number1 + number2;

C++ must perform the following steps:

- 1) Convert number1 from single to double precision.
- 2) Convert number2 from single to double precision.
- 3) Double precision add.
- 4) Convert result into single precision and store in answer.

If the variables were of type **double**, C++ would only have to perform the steps:

- 1) Double precision add.
- 2) Store result in answer.

Power Series

s in
$$(x) = 1 + x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

 $sin(\pi/2)$

	Гerm	Value	Total
1 2	X	1.5 71E + 0	
2 2	x ³ /3!	6.4 62E -1	9.2 48E -1
3 2	x ⁵ /5!	7.9 74E -2	1.0 05E + 0
4 2	x ⁷ /7!	4.6 86E - 3	9.9 98E -1
5 2	x ⁹ /9!	1.6 06E -4	1.0 00E + 0
6 3	v ¹¹ /	3 6 0/〒 - 6	1 0 00₽ +

Sin(pi)

	Term	Value	Total
1	X	3.142E+ 0	
2	x ³ /3!	5.170E+ 0	-2.028E+0
3	x ⁵ /5!	2.552E-0	5.241E-1
4	x ⁷ /7!	5.998E-1	-7.570E-2
5	x ⁹ /9!	8.224E-2	6.542E-3
6	$x^{11}/11!$	7.381E-3	-8.388E-4
7	x1 ³ /13!	4.671E-4	-3.717E-4
8	$x^{15}/15!$	2.196E-5	-3.937E-4
9	$x^{17}/17!$	7.970E-7	-3.929E-4
10	$x^{19}/19!$	2.300E-8	-3.929E-4