Chapter - 21
Advanced

Classes

Copyright 2003 O'Reilly and Associates ~ Pagel

o ——— ——— N S &~

Derived classes

Defining a bounds checking stack:

public:

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page2

Bound check stack (cont.)

}

stack: :push(item);
}

}
}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page3

Derived Classes arelikethe base
classes only with something extra

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page4

Derived classes can be used anywher e you
can use a base class

W
O
S
I
“
©
3
Y,
O
M o~ on
t))
NN 1
n o C
OO n mn
==
- Q, O,
h..
IEREVIRY,
10O
o @
n P P
5 0N 0
o, | |
© ©
o)
-
O
S

//

// A random stack

4

b stack bounded stack;
//

) ;

bounded. stack

push_things (

N

-
| -

(now invisible)

stack

b stack

3
7
.

%
.\. W

Z : “".\\ \\
wamﬁx
-

=

NS

' b_stack |

stack “peephole”

| what “push_things” sees

bounded stack

Page5

Copyright 2003 O'Reilly and Associates

Practical C++ Programming

Dynamically Allocated stack

class stack {

private:
stack
protected:
public:
stack (const unsigned 1nt size) {
data = new int[size];
count = 0;

¥

virtual ~stack (void) {
delete data;
data = NULL;

//

Usage:
stack big_stack (1000);
stack small stack (10);
stack bad_stack; // Illegal, size required

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page6

Derived Class

We have Derived class. How do we call the parameterized constructor in the base
class?

class b_stack: public stack {

private:
// Size of the simple stack

public:
b_stack (const unsigned int size)

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page7

class a {

}i

class b {

}i

Protections

class ¢ : public a, private b {

public:

void function (void) {

}i

Practical C++ Programming

// Legal or Illegal?
a_private = 1;
a_protected = 1;
a_public = 1;

b_private = 1;
b_protected =
b_public = 1;

1;

main ()
class ¢ c_var;

Copyright 2003 O'Reilly and Associates

c_var.a_private = 1;
c_var.a_protected
c_var.a_public = 1;
c_var.b_private = 1;

c_var.b_public = 1;

c_var.c_private = 1;

:]_;
c_var.b_protected = 1;
c_var.c_protected = 1;

c_var.c_public = 1;

Page8

Sending mail the hard way

Let’s define a class to mail a letter:

class mail {
public:
address sender; // Who's sending the mail
// (return address)
address receiver; // Who's getting the mail

// Send the letter
void send_it (void) {
Some magic happens here
I
}i

void mail::send_it (void) {
switch (service) {

case POST_OFFICE:
put_in_local_mail_box () ;
break;

case FEDERAL_EXPRESS:
fill _out_waybill();
call_federal_for_pickup();
break;

case UPS:
put_out_ups_yes_sign () ;
give_package_to_driver();
break;

//... and so on for every service in the universe

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page9

Smplepost_office class

class post_office: public mail/{
public:
// Send the letter
void send_it (void) {
put_in_local_mail_box () ;
Y
// Cost returns cost of sending a letter in cents
int cost (void) {
// Costs 32 cents to mail a letter

// WARNING: This can easily become dated
return (32);

}i

Example:

vold get_address_and_send(mail &letter) {
letter.from = my_address.
letter.to = get_to_address();
letter.send_1it () ;

}

/...
class post_office simple_letter;
get_address_and_send (simple_letter);

Nice 1dea, but it doesn’t work

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel0

virtual functions

The keyword virtual tells C++ “Look for the
function 1n the Derived class first”

Class Type Member Function type Search order
Derived Normal Derived->Base
Base Normal Base

Base virtua Derived->Base

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagell

public:

Practical C++ Programming

virtual usage

Copyright 2003 O'Reilly and Associates

Pagel2

........

{
a_base.al();
a_base.b();
a_base.c();

}

int main ()

{
a_derived.al();
a_derived.b();
a_derived.c();
do_base (a_derived);

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel3

Virtual class mail

class mail {
public:
address sender; // Who is sending the mail
address receiver; // Who is getting the mail

// Send the letter
virtual void send it (void) {
std::cout << "Error: send_it not defined" <<
"in derived class.\n"
exit (8);
b
// Cost of sending a letter in pennies
virtual 1int cost (void) {
std::cout << "Error:cost not defined " <<
"in derived class.\n"
exit (8);
b
Y7

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel4

Post Office Derivation

class post_office: public mail {
public:
vold send it (void) {
put_letter _in_ box();
}
int cost (void) |
return (29);

}
} s

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel5

Abstract mail class

class mail {
public:
address sender; // Who is sending the mail
// (return address)

// Who is getting the mail
address receiver;

// Send the letter
virtual void send it (void) = 0;

// Cost of sending a letter in pennies
virtual int cost (void) = 0;

b

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel6

Two room repair shop

class room {

class garage:
class office:

}s

public room {
public room {

b
b

class repair_shop: public garage,

Practical C++ Programming

room

room

l

garage

l

office

.

repair_shop

Copyright 2003 O'Reilly and Associates

office {

Pagel7

One room repair shop

class room { ... };
class garage: wvirtual public room { ... };
class office: wvirtual public room { ... };
class repair_shop: public garage, office { }
room
garage office

.

repair_shop

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel8

- e— e—l @ e—ey N v S e~ Y N Jr N5 7 - 7 A

Function Hiding in Derived
Classes

public:

} i
public:
I

int main () {

// not defined in
// the class "derived"

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel9

constructors, Destructors,
Derived Classes

Constructor order: Base class, Derived Class
Destruction order: Derived Class, Base class

If the destructor of a base class 1s not declared virtual, then deleting a

pointer to the base class will cause C++ to skip the calling of the

When in doubt, declare the destructor virtual.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page20

Question:

Why does the following program fail when we delete the variable | i st _pt r ? The program
seems to get upset when it tries to call cl ear at line 17.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page21

o L @ =m_=L-—=-rr4J /S5 =% £ =L £ S = -_— -

Question (continued)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page22

